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Abstract 

The representations of the para-Fermi algebra in the Fock spaces of para-Bose and 
para-Fermi operators are constructed. The unitary equivalence of different representa- 
tions is proved. The Bardeen-Cooper-Schrieffer pair creation and annihilation operators 
and the four fermion interaction appear as particular realisations of the para-Fermi 
algebra. The para-Fermi algebra representations in quantum mechanics are discussed. 

1. Introduction 

In Parts I, II and III of  this series (Kademova, 1970; Kademova & 
K~ilnay, 1970; Kademova & Kraev, 1970) making use of the isomorphic 
mappings of  the para-Fermi algebra into the bilinear polynomials of the 
parafield operators, the problem of realising the representations of  this 
algebra in the Fock space of Bose or Fermi operators has been studied. 

In Section 2 of  the present article we show that all the representations 
of the para-Fermi algebra with two generators can be realised in the single 
particle subspaces H ~  1 of  the Fock space of  p + 1 (p = 1,2,...) para- 
Bose or para-Fermi operators of arbitrary order ofparastatistics q = 1,2,.... 
The representations realised in these spaces are unitarily equivalent for 
fixed p and arbitrary q and e. The parastatistics of the induced transforma- 
tions depends only on the number p + 1 of the operators and does not 
depend on their parastatistics and their type. We show also that the rep- 
resentations induced in Hg~ +~ are unitarily equivalent to the representations 
induced in the space Hp (p-particle subspace of the Fock space of two 
Bose operators). The representations induced in the one-particle subspace 
of the Fock space of infinitely many parafield operators form a Bose 
algebra. 

In Section 3 the results of  Greenberg and Messiah connected with the 
commutation relations between different fields are reviewed. Using them 
we show in Section 4 that the four fermion interaction Hamiltonian appears 
as a particular case of the high-order realisations of the para-Fermi algebra. 
The Bardeen-Cooper-Schrieffer pair creation and annihilation operators 
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in the theory of  superconductivity are para-Fermi algebra generators as well. 
Finally, in Section 5 we discuss the meaning of  the para-Fermi algebra 

representations in quantum mechanical terms. 

2. Realisations of  the Representations of the para-Fermi Algebra in the Fock 
Spaces of para-Bose and para-Fermi Operators 

We start with the Green isomorphic mappings of an arbitrary para- 
Fermi algebra with two generators of order of parastatistics p into the 
bilinear polynomials of  p + 1 para-Fermi or para-Bose operators of  
parastatistics q, which were defined in Parts I and III of this series of  articles. 

+ 
aT;-. p F v -+ ~ ,  = �89 [a,,at+l], 

i~: + + (2.1) 
F r ___> _~-p _ (~-r "~+ 

+ 

where at, a j, i, j = 1 ..... p + 1, stand for para-Bose operators of  para- 
statistics q for positive e and for para-Fermi ones for negative e. 

We shall find all the representations of  the para-Fermi algebra in the 
space HP+I _.q~ , p = 1,2 ..... of  p + 1 para-Bose or para-Fermi operators of  
order of  parastatistics q. 

For  this purpose we embed, using the Green Ansatz (Green, 1953) 

q 

a t  = ~,, a t  ~ 

(2.2) 
+ q + 

a i = ~ a i  ~ 

+ 

the algebra of  the parafield operators as, a s, i, j =  1,...,p + 1, into the 
algebra q/(p + 1,q, E) (Kademova & Palev, 1970) of the quasifield operators 
+ 

at ~, aj ~, i , j =  1 .... ,p + 1, ~,/3 = 1,...,q, for which the relations 

+ + 4- 

[at ~, aj~]_,  = 8~j, [ai% a j~] - ,  = [at ~, a j~ ] - ,  = 0 
+ + + (2.3) 

[a? ,  aft] ,  = [at ~ af t] ,  = [a~ ~, a f t ] ,  = 0 (~, #/3)  
hold. 

Let us now consider the transformations induced by the operators 
+ + 

o-~.p ,~z:p Hg+l ~*q,, ~ ,  in the space spanned on the vectors akl0), k = 1,..,,p + 1 
+ 

(the operators ak are para-Bose or para-Fermi ones of  order ofparastatistics 
q). 

~ : ' - p  - -  1 P �9 ~" ~ ak[O) - z ( F  )t ~+, [at, at+l] ,  a~lO) 
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Using the Green Ansatz (2.2) this can be put into the form 
+ q + + 

q + + 

=�89 Z [a,~',a~[+~],ak~l O) 
a , / 3 = l  

Here the relations (2.3) were used. After adding and subtracting some terms 
we obtain 

~ ' . p  __  1 P i t i + l ,  k J - e  ~ -  E a t a k a i +  1 -I- 
~ = i  c t=l  

q + + q + + 

+ ~ a,~[aT§ - E  ~ ai~ak~a~+~ + 
1 1 

q + q- q q- q- 

+ e ~ [a~+l,a,~']_,ak[3 + , 2 ~ a,~'[a~ + 
~ , f l = l  ~=1 

q + + q + + 

+ e 3 ~ a,~'ak~'a~+l + e 2 ~ a,~[a~+l,ak[~], - -  

~ = 1  1 

+ +  } 
- E  3 ~, a~akr I0) 

1 

Now using the relations (2.3) and the fact that the operators a~ ~, i = 1,..., 
p + 1, e = 1 .... ,q, acting on the vacuum 10) give zero we obtain that only 
the first and the sixth terms give non-zero contribution. Since E 2 =  1 we 
finally get 

+ + 

~-g, aklO) = (F~')k_,kak_~ [0) (2.4a) 

In a similar way one gets 
+ + + + 

o~g, ak lO) = (F')k+~k ak+, [0) (2.4b) 

So the space Hq p+l is invariant under the transformations (2.4a) and 
(2.4b). Moreover, these transformations form a para-Fermi algebra of  

parastatistics p. The vector a~ [0) plays a role of a vacuum for this algebra 
and 

+ + 4- 

5~q~5~ q~a110) =pal [0) 

Thus for arbitrary fixed q and E (q = 1,2 ..... e = 4-) the vectors at[0), 
i = 1,...,p + 1, span a representation of  the para-Fermi algebra of  para- 
statistics p. 

A question arises whether the representations for two different pairs 
q, e and q', e' are essentially different. 
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Let us consider the spaces H~ '+1 and H ~  1 spanned on the vectors 
+ + 
a,(q,e)[0) and ai(q',e')10), i = 1 .... ,p + 1, respectively (we use the indices 
q, e and q', e' in order to avoid confusion). And let us define an operator 

p+l  + 1 
q / =  5 ai(q', e')a,(q, e ) . - -  (2.5) 

i=i v'(qq') 

This operator maps the space/4p+1 onto the s ace p+l _.~, p H e , , .  More precisely, it 
+ + 

transforms the vector ai(q,e)]O) ~ H U  1 into the vector ai(q',e') ~ H~,+,), 
i = 1,...,p + 1. This can be proved in a way similar to that used for obtain- 
ing the formula (2.4a). 

The inverse transformation mapping~ Hr onto __H p+la, is 

p + l  + 1 
E ! r q1-1 = ,=1 ~" a,(q, )a,(q ,e ). /(qq,) (2.6) 

So the transformation q/ is  a unitary one. 
Thus, the fact that the representations of  the para-Fermi algebra realised 

in the spaces H~ +1 and H ~ .  1 are unitarily equivalent is proved, which is in 
agreement with the theorem of  Greenberg and Messiah (Greenberg & 
Messiah, 1965b). 

In Section 1 we proved that all the representations of  the para-Fermi 
algebra with two generators can be realised in the Fock space of  two 
Bose operators. In the p Bose particle subspace H u cd/~2 ~ an irreducible 
representation of  the para-Fermi algebra of order of  parastatistics p is 
realised. 

We shall show that there exists a unitary transformation which maps 
the subspace Hp onto the space Hff, +1 (q, e-arbitrary), i.e. that the induced 
transformations in these spaces form unitarily equivalent irreducible 
representations of the para-Fermi algebra of parastatistics p. 

Let us remember that the space Hp is spanned on the vectors 

+ + 

(b~)~(b2) ~ 
V(~!/~!) [o> 

where ~ +/3 = p. 
Then 

+ + 

n+l (h i )  n - t+ l  (b2) t - I  1 
~ ,  = Z . (2.7) 

,=1 ~ / [ ( p -  i +  1 ) ! ( i -  1)l] a' ~/q 

is a transformation mapping the space H~, +1 (here we do not attach the 
indices q, e to a ,  since no confusion can arise) onto the space Hp. More 

+ 
i t / p +  i -" precisely the vector a~[0) e . .  q, Js mapped into 

+ + 

(hi) ~-~+l (b9 ~-1 
V[(p- -  i +  1)!(i--  1)!] lO) eH p  
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The inverse transformation is 

p+l + ( b 2 ) "  (bl) p-i+l 1 
~ t l X =  ~ a i (2.8) 

,=1 "V/[( i -1) l(p- i  + l)!] 

Thus the unitary equivalence of the representations of the para-Fermi 
algebra in the spaces defined above is shown. 

With respect to the transformations induced by the para-Fermi algebra 
the spaces r/p+l (forp fixed and q, E arbitrary) are indistinguishable between 
themselves, and each of them is indistinguishable from the space H r In 
these spaces unitarily equivalent transformations of the para-Fermi 
algebra are realised. 

Consider now the high order limitp ~ ~ of the mappings iff,. It has been 
proved by Greenberg and Messiah (Greenberg & Messiah, 1965a) that the 
high order limit of the para-Fermi algebra is a Bose algebra, i.e. the para- 
Fermi operators 

+ 
F p + F p 

B = l i r a - -  B = lim 

satisfy the Bose commutation relations. Therefore, the operators defined 
through the mappings 

~-p + 
B -+ ~ , ,  = lim ~ = (B)~a [at, a~], 

lim iff,: P ~  ~/P (2.9) 
p-~co + + 

B -+ ~ . ,  = (~.,)+ 

form obviously a Bose algebra in the space 

lim r4p+l 
p~cO 

It is clear that the representations of the Bose algebra realised in the spaces 

lira Hp c ~21 and lira H~, +1 
p ~ c o  p ~  

are unitarily equivalent. 

3. Commutation Relations Between Different Parafields 

Here we briefly review the results of Greenberg & Messiah (1965b) 
concerning the commutation relations between different parafields. It has 
been shown by them that the most general commutation relations between 
different parafields should be trilinear. In order to limit the choice of the 
trilinear commutation relations the authors adopt requirements such that 
the commutation relations for one parafield be a special case of them. They 
demand: (i) the left-hand side of the commutation relations must have the 
form [[a,b]~,e]n with E, ~ = •  and the right hand side must be linear; 
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(ii) when the pair  [a,b]~ refers to one and the same field (e = • for  para-Bose 
and para-Fermi  cases respectively) it must  commute  with c(~ = - )  if  c 
refers to another  field; (iii) these relations must  be satisfied by the ordinary 
Bose and Fermi fields. 

In the case o f  two parafields a~ and b j, i, j = 1,...,n, using the condit ions 
(i)-(iii) one gets the following commuta t ion  relations. For  one of  them as 
they are of  the known type 

+ + + 

[�89 a~]~~ a~]_ = ~j~ at 
(3.1) 

[ [ai, aj],a, ak]_ = 0 

and the same for  b~. By E a and E b the type & t h e  fields at and b j, respectively, 
is denoted.  

The commuta t ion  relations involving both  fields are 

+ 

[ [a .  aj],o, b~]_ = 0 (3.2) 

[[a~, aj],o, bk]_ = 0 (3.3) 
4- + 

[ [as, a j],., bk]- = 0 (3.4) 
+ 

[�89 aj]n, ak]-n,. = - ea3Skbi (3.5) 

+ 

[�89 bj]n, ak]-n,a = ~a,  ba (3.6) 

+ + 

[ [a ,  a j],,, bk]_ = 0 (3.7) 

+ + + 

[�89 aj]n, a~]_~,, = 3~.k bi (3.8) 

+ + + 

[�89 bj]n, ak]-~,. = _~?ea 3~ bj (3.9) 

[[b~, aj]n, ak]_n,, = 0 (3.10) 

+ + 

[ [bi, aj]~, ak]_n,. = 0 (3.11) 

The  index ~7 = • takes on one and the same value for  all the commuta t ion  
relations (for ~7 = + the two fields are relative para-Bose and for  ~7 = -  
they are relative para-Fermi).  

The  commuta t ion  relations (3.2)-(3.11) are obtained by using the con- 
ditions (i)-(iii), the hermit ian conjugation and the generalised Jacobi  
identity 

[[a,b],,c]_+[[c,a]~,b]_~,+~?E[[b,c]~,a]_~,=O (3.12) 

All the other  commuta t ion  relations are obtained by interchanging a~ and 
bl. 
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It can be shown as in the case of  a single parafield that using the Green 
Ansatz the algebra of  the parafield operators can be isomorphically 
embedded into the algebra of the quasifield operators ai ~, bJ  3. 

The operators a~ ~', bfl satisfy the commutation relations (2.3) of  the 
quasifield operators and the following relative commutation relations 

+ 

[ai ~', bj~]_n = 0 , [a~ ~, bT]_ n = 0 
+ (3.13) 

[at", bfi]n = 0, [a~ ~, bj/3]~ = 0 (~ # fl) 

The index ~/takes on the same values as in (3.2)-(3.11) and determines the 
relative type of  the quasifield operators a~ ~' and bfl. 

It has been proved that all Fock representations of  the commutation 
relations (3.1)-(3.11) are given by the Green Ansatz and are determined by 
the existence of a no-particle vector 10> and the conditions 

+ 

as aj 10> =p3~j 10> 
+ 

b~ bj 10> =pSij  IO> 
+ (3.14) 

ai bj 10> = 0 
+ 

b, aj [0> = 0 

The commutation relations for more than two fields follow from the 
results of Greenberg and Messiah. Let ai, b j, ek, be different parafields and 
~ab, ~/ac, ~bc their relative types. Then 

[[ai, bj]n,b, ek]_ = 0 (3.15) 

and all the other commutation relations involving three of the fields are 
also zeros. This can be proved by the use of the Green Ansatz and the 
commutation relations (3.13). 

4. Some Quantum Theory Operators as Generators of para-Fermi 
Algebras 

Here we show that as a consequence of the para-Fermi algebra realisa- 
tions the Bardeen-Cooper-Schrieffer (BCS) pair creation and annihilation 
operators in the theory of the superconductivity and the four fermion 
interaction appear as elements of the para-Fermi algebra. 

4.1. BCS Operators as para-Fermi Algebra Generators 

A general method for realising para-Fermi algebra generators as high- 
order polynomials of parafield operators of one and the same field has 
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been given in (Kademova, 1970b). From these realisations it follows straight- 
forwardly that the entities 

o~ = f  l/zf ~l/z 
+ + (4.1.1) 

~" = f-21(2fl/2 

generate a para-Fermi algebra with f l /z ,  f~l/2 being Fermi operators. The 
+ 

operator f~/z creates a Fermi particle with spin �89 in the level 1 and the 
+ 

operator f~i/z creates a Fermi particle with spin --~ in the level 2. (In 
Kademova (1970b) it is to be understood that the indices �89 and --~ are 
included in the subscripts.) 

+ + 

In the space X spanned on the vectors [0> andf~t/2f~/z 10> the operators 
(4.1.1) induce transformations which form a Fermi algebra. 

I f  in (4.1.1) we replace the indices 1 and 2 by k and - k  we get the pair 
creation and annihilation operators in the BCS theory of superconductivity. 

+ 

Consider the BCS pair creation and annihilation operators o~-k and ~ k  
+ + 

defined ,h . . . . .  h r r c-1/2 r for all possible values o fk  = 1,...,n. , . l x x v u ~ l  J k  ~ J k  ~ J - k  ~ d - k  
Each pair form a para-Fermi algebra with two generators and all the pairs 
define a direct sum of para-Fermi algebras with two generators each. The 
transformations induced in the space spanned on the vectors 

f + + 

IO), 1~ f - 1 / 2 f l / 2  [0) 
k = l  

i = 1 ..... n, contain a para-Fermi algebra with two generators of para- 
statistics n. In the ease of n -+ oD they contain a Bose algebra with two 
generators. 

It is interesting to remark that the operators 
+ + + 

~ "  = f i / 2 f  21/2 , ~'~ = f  21/2f i /2  ( 4 . 1 . 2 )  

which are a particular case of the realisations (2.1) for p = 17 q = 1 and 
+ + 

= - ,  induce transformations in the space X~: fi/210), f~l/2[0), which 
form a representation unitarily equivalent to the representation of  the 
operators (4.1.1) in the space X. The unitary transformation is 

+ 

q/z =fi/2 _f l /2  

4.2. Para-Fermi Algebra Realisations by means of Different Parafields 

Let us now construct some particular realisations of the para-Fermi 
algebra by means of parafield operators corresponding to different para- 
fields. 
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Fo r  this purpose we start with the entities 

+ + 

o~ = �89 b]. 0 

+ 

5 = �89 a]n 
(4.2.1) 

where a and b both  are para-Fermi  or para-Bose operators  o f  different 
parafields which are relative para-Fermi  or para-Bose, i.e. E a = eb = E = :k, 
~/= :t:. 

Let  us show that  the entities (4.2.1) generate a para-Fermi  algebra. 
Using (3.5) and (3.8) we obtain 

+ + + + + 

[~",~,~]_ = �88 [a, b], v [b, a]n ]_ = �89189 bln, b]_,,~ a + 

+ + + + + + 

+ E~lb[�89 b], l, a]_o~ + ~][�89 b]~, a]_~,~ b + ea[�89 b],7, b]_~} 

+ + + + 

= �89 - bb - Ebb + eaa} 

+ § 

= �89 a], - [b, b],} 

Further ,  using (3.1), (3.2) and (3.7) we get 

+ + + + 4- + 

[ � 89  = �88189 a],, [a, b]n]_ - [�89 b],, [a, b]~]_} 

+ + + + 

= �88189 + ~b[�89 - 

+ + + + 

- a[�89 b], ,  b]_ - ~ [�89 b], ,  b]_ a }  

So we have 

+ + + + + + 

= �88 + ~Tba + ab + ~?ba} = �89 b]n = ~.~ 

+ + + 

[ �89  = o~ 

Obviously the relation 

holds. 
+ 

Thus we have shown that  o ~ and ~"  generate a para-Fermi  algebra 
with two generators.  

+ 

Let  us now define by analogy with (4.2.1) the operators  G and G 

+ + + 

G = �89 d],7,, G = �89 c]n. (4.2.2) 
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As in (4.2.1) both operators c and dare  para-Fermi or para-Bose, ec = e~ = 
~ ' - -+ ,  and are relative para-Fermi or para-Bose, ~?'= • The operators 
+ 

G and G generate a para-Fermi algebra with two generators, too. 
Consider now the commutators of the para-Fermi operators (4.2.1) and 

(4.2.2). Using the relations (3.15) we obtain 

+ + + + + + + + 

[ ~ ,  G]_ = �88 b]n, [c, d]~.]_ = �88 b]n, c]_ d + c[[a, b]n, d]_ + 

+ + + + 

+ r/[[a, b]n, d]_ c + ~7' d[[a, b]n, e]_} = 0 

Similarly, all the other commutators are zeros. 
Using (4.2.1) and (4.2.2) we finally construct the entities 

+ + + 

= �89 G]+ = }[[a, b]~, [d, c],.]+ 

+ + + + (4.2.3) 
~a = �89 jaz-]+ = ~[[c, d],., [b, a],]+ 

4.3. Four Fermion Interaction as an Element o f  the para-Fermi Algebra 

+ 

The entities ~ and ~ have been constructed by means of arbitrary 
different parafields. Let us consider the particular case when a, b, c, d are 
Fermi operators. Then the operators 

+ + + 

= o~G = abde 

+ + + + 

oo~ = G ~  = edba 
(4.3.1) 

are generators of a para-Fermi algebra. This can be readily checked. 
Making use of the fact that the operators (4.2.1) and (4.2.2) commute we 
get 

+ + + + + 

[E~e,~l_,~e]_ = [[a~-,Ja]_,  6~1_ 
+ + + + +  + + +  + 

= 2 G G G Y : :  - G G G J ~ Y  - G G G ~ :  

+ + + 

Now using the particular realisations of ~-, ~ ,  G, G and s ~a by means 
of Fermi operators we obtain 

+ + + 

[�89 se]_, ~]_ = ~e 

+ 

Thus it is shown that ~ and ~r generate a para-Fermi algebra. 
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Consider the transformations induced by the operators (4.3.1) in the 
+ +  ++ 

space spanned by the vectors da [0) and eb I 0) 
+ ++ ++ 

~Pda 10) = cb ]0) 
+ ++ 

~q~eb [0) = 0 
++ ++ (4.3.2) 

~ c b  [0) = da lO) 
++ 

s 10) = 0 
+ 

The operators 5r and ~ form a Fermi algebra in this space. 
The four fermion interaction Hamiltonian can be considered as a linear 

combination of operators of the type (4.3.1). If  we attach the indices i,j, k, l 
to the operators a, b, c, d, the four fermion interaction Hamiltonian can be 
put in the form 

+ + 

�9 N ~= ~ 3-~jkla~bjdkel+h.c. (4.3.3) 
i , j , k , l  

where 3--UkZ are coefficients. Therefore, ~ is a linear combination of the 
generators of para-Fermi algebras with two generators each 

+ + + + + 

~ijkZ = aibjdkez, ~ j k l  = eldkb~a~ 

The set of indices i, j, k, l label the para-Fermi algebras. 

5. Para-Fermi Algebra Invarianee 

In the previous sections we have constructed the representations of the 
para-Fermi algebra in terms of quantum field operators. Let us now discuss 
the induced transformations in the case of quantum mechanics. 

Consider a system of identical non-interacting particles which can occupy 
a number of different states. As a consequence of the permutation invariance 
the Hartree wave functions for the system can be divided into equivalence 
classes. Two wave functions are said to be equivalent if they can be reached 
one from another by a permutation. In each class a representation of the 
permutation group is realised which is generally reducible. By a convenient 
choice of the basis one can reduce this representation space. In the sub- 
spaces of the symmetrical (antisymmetrical) functions, describing Bose 
(Fermi) particles, irreducible representations of the permutation group 
are realised. In the case of  only two identical particles these two subspaces 
constitute all the space, while in the case of more particles there are other 
higher dimensional subspaces. Operators Nij can be introduced (the 
indices i andj  denote the possible states of the particles) which act transitively 
in the space of  the equivalence classes. The operators Nij applied on a 
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function of a given class transform it into a function of such a class that 
the number of  the particles in the state j is less by one and in the state i 
more by one. 

In quantum mechanics only symmetrical or antisymmetrical wave 
functions are used in accordance with the symmetrisation postulate. In 
this case, because of the isomorphism between the quantum mechanical 
and the quantum field theory pictures, the operators N~ can be put into 

+ + 

the form N~j = a~aj, where at and ag are creation and annihilation Bose 
or Fermi operators. It is seen from (2.1) that the para-Fermi algebra 
generators can be expressed as linear combinations of the operators N~ = 
+ 

a~aj. In quantum mechanical terms the representations of the para-Fermi 
algebra are realised in the space of the equivalence classes of symmetrical 
or antisymmetrical functions. In the case of n Bose particles and two states 
the space is transformed according to an irreducible representation of  the 
para-Fermi algebra with two generators of  parastatistics n. In the case 
of only one Bose or Fermi particle and n + 1 states each class contains 
only one function and the whole space is transformed under an irreducible 
representation of  the para-Fermi algebra with two generators of para- 
statistics n. For m Bose or Fermi particles and n states such a simple 
structure of  the space of the equivalence classes does not exist. The rep- 
resentations of  the para-Fermi algebra are generally reducible. 

The consequences of the para-Fermi algebra invariance will be studied 
further. 
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